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Abstract 

The scattering of Goldstone and longitudinal gauge bosons in weak 

interaction theories with a strongly coupled Higgs sector is studied. 

By combining low energy theorems with analyticity, unitarity, and 

crossing symmetry, it is argued that, quite generally in such theories, 

one would expect a prominent resonance in the I=J=l channel (where 

I-weak isospin) analogous to the p resonance in x-7 scattering. The 

possibility that this resonance is at 170 GeV and is responsible for 

some of the recent unusual CERN collider events is explored. The 

minimum requirement for such an interpretation is a model wit;. two Higgs 

doublets whose vacuum expectation values differ by a factor of five to 

ten. This is the same model and about the same ratio of vacuum 

expectation values needed to interpret the recently discovered r,(8.3) as 

a Higgs particle. 

5 Operated by Universities Research Association Inc. under contract with the United States Department 0, ~nero” 
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I. Introduction 

In spite of the overwhelming success of the standard 

Glashow-Weinberg-Salam model of electroweak interactions, the details of 

the Higgs sector of the theory are still poorly understood. An 

intriguing possibility which was discussed some time ago by Veltman’ and 

by Lee et. al.‘, is that the Higgs sector of the theory is strongly 

interacting, with a self-coupling of order unity. 3-4 The low energy weak 

interactions are effectively screened from the dynamics of the Higgs 

field, being sensitive only to its vacuum expectation value, and because 

of this there are presently no experimental limits on the strength of 

the Higgs self-coupling. 

Recent unusual events from the CERN UAl and UA2 experiments5 have 

prompted us to reconsider the dynamics of a strongly interacting Higgs 

sector. Although the interpretation of these events is far from clear, 6 

Some of them might be regarded as decays of an object with mass around 

160-180 GeV. Indeed Veltman7 has suggested that this object may be a 

bound state of gauge bosons. Such bound states might occur quite 

naturally in a theory with strongly interacting Higgs fields, since 

longitudinal gauge bosons also exhibit strong self-interactions in such 

a theory. In addition to this possible experimental motivation, 

theoretical considerations lead us to take the possibility of a strongly 

interacting Higgs sector seriously. If the Higgs fields which are 

responsible for the breakdown of SU(2)xU(l) are composite, such a3 in 

technicolor models, it might be expected that they would have strong 

self-interactions due to residual technicolor forces, just as pions have 

strong interactions due to residual color forces. 
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In this paper we shall investigate the properties of a strongly 

interacting Higgs sector, focusing particularly on the question of 

whether such a theory might give rise to a bound state or resonance in 

the 160-180 GeV range which could account for some of the CERN events. 

The approach we take to this problem is similar to that of Ref. 2. We 

consider the implications of partial wave unitarity in various two-body 

amplitudes which describe the scattering of longitudinal gauge and Higgs 

bosons. Since the gauge couplings are small, we will neglect them and 

retain only the interactions of the Higgs sector. Longitudinal gauge 

bosons are represented by the corresponding Goldstone mode3 of the Higgs 

field. In Ref. 2, the analysis of the full weak interaction theory was 

reduced to a study of the Higgs Lagrangian in the high energy limit 

(s>>mi). Here we are considering the possibility of a resonance with a 

ma33 around 170 Cell, and 30 do not wish to restrict our discussion to 

the case s>>mi. A sensible approximation at all energies is to neglect 

term3 in the Lagrangian which represent real gauge interactions of order 

g, but retain the gauge boson mass terms (of order g*v*) which are 

generated by spontaneous symmetry breakdown. Thus, the theory we will 

investigate is described by the Higgs Lagrangian plus explicit ma33 

terms for the Goldstone (longitudinal gauge) bosons. This theory is 

jU3t a linear sigma model, and the study of longitudinal gauge boson 

scattering is quite similar to that of x-x scattering in hadron physics. 

The gauge boson mass term3 are analogous to a pion ma33 term which 

explicitly breaks chiral symmetry. To the extent that these mass terms 

are small (e.g. compared to the mass of the physical Higgs scalar in a 

minimal one doublet model) one may derive a low energy theorem for the 

scattering of gauge bosons analogous to Weinberg’s result for 71-x 
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scattering. a In the latter case, the behavior of 3-x scattering below 1 

GeV is to a large extent determined by the low energy current algebra 

constraints combined with analyticity, unitarity, and crossing symmetry. 

Our treatment of gauge boson scattering parallel3 the discussion of 17-71 

scattering by Brown and Gable.' In that treatment, unitary amplitudes 

are constructed via an effective range expansion for 3- and p-wave phase 

shifts. Similar conclusions are reached if one follows the approach of 

Basdevant and Lee," who construct unitarized V-II scattering amplitudes 

by Pad; approximation of o-model perturbation theory." 

Some of our main results concerning the behavior of strongly 

interacting Higgs theories can be understood by pursuing the x1-11 

analogy. Let us first consider the minimal Weinberg-Salam model with a 

single complex doublet. In Ref. 2, the implication3 of partial wave 

unitarity for the s-wave scattering of longitudinal gauge bosons was 

considered. In that work, a unitarized s-wave amplitude was constructed 

via the N/D method (with the neglect of left-hand cuts, this is 

essentially equivalent to the effective range procedure employed here). 

The elementary Higgs scalar appears as a pole in this amplitude. It was 

found that for weak Higgs self-coupling A (h<<l) the s-wave pole is near 

the real axis and the Higgs scalar is a narrow, well-defined state with 

a ma33 near the perturbative value of m;l=PXv*. A3 1 approaches unity, 

the Higgs particle becomes heavier and more unstable. For a strongly 

coupled theory (A281 the Higgs pole has migrated far away from the real 

axis on the second sheet of the complex s plane and is no longer a 

well-defined resonance. A3 we will see in the following Section, the 

nature of the elementary Higgs scalar in the strongly coupled 

one-doublet model is expected to be similar to that of the I=J=O partial 
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wave in n-v scattering. In the latter case the unitarized current 

algebra result is in reasonable agreement with experimental data. (Here 

the Padk result is in somewhat better quantitative agreement than the 

effective range formula.) Both theory and experiment suggest that the 

I=J=O x-x phase shift is positive, increase3 to near 90’ at around 600 

MeV, and remain3 close to 90’ over a broad range of energies (from 600 

to at least 900 MeV). Since this behavior seems to be essentially 

dictated by current algebra, analyticity, unitarity, and crossing 

symmetry, we expect that these results can be carried directly over to 

the strongly coupled one-doublet model of weak interactions with an 

appropriate change of scale for f 71. Thus, the s-wave scattering of 

longitudinal gauge bosons should exhibit strong interaction3 (large 

phase shift) but no clearly defined scalar resonance. (There is of 

cour3e a whole range of possibilities between weak and strong coupling 

for which the Higgs scalar would be more or less well-defined.) Next we 

apply the same considerations to the I=J=l partial wave. This is in 

many ways the most interesting channel because of the prominent p 

re3onance that appears in the p-wave ti-TI amplitude. A3 in the s-wave 

case, the behavior of the p-wave phase shift is dictated largely by 

general principles, which would suggest a similar behavior in the weak 

interaction model. In Section II we consider p-wave scattering of 

longitudinal gauge (Goldstone) bosons and obtain one of the main results 

of our analysis: the expectation that a new I=J=l (where I=weak isospin) 

re3Onance will appear in the Weinberg-Salam model with strongly coupled 

Higgs fields. In technicolor models, this re3onance would be identified 

with the technirho. But our analysis suggests that its existence is a 

general property of strongly interacting Higgs models, independent of 
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any underlying dynamical model for the Higgs fields. We might also 

expect higher spin re3onance3 analogous to the f’, g, etc., though with 

somewhat less certainty, because current algebra makes no statement 

about partial wave amplitudes for J>l. Our main focus in this paper 

will be on the I=J=l resonance, which we will refer to as K since, a3 

we will see, such a resonance (in a two-doublet model) is a possible 

candidate for Some of the CERN collider events. The I=J=l re3onance is 

singled out by the fact that it can mix with the ordinary W and Z 

bosons. This provides a production mechanism which, at present 

energies, is much more efficient than other mechanisms such as virtual 

W-W scattering. 

Having suggested this new vector boson resonance, we then address 

the question of whether it could possibly have a mass in the 170 GeV 

region. For a one-doublet model, the answer is probably negative. The 

effective range parametrization of the p-wave x-x phase shift has two 

parameters, the scattering length and effective range, which determine 

the ma33 and width of the p. Of these, only the scattering length is 

determined by current algebra. This yield3 a successful relation 

between m 
P 

and I’ 
P Or gpnrr but does not determine m 

P’ 
However, it seem3 

reasonable to expect the analogy between II-II scattering and longitudinal 

gauge boson scattering to go beyond current algebra, since they are both 

presumed to be well-described by a linear o-model with m;>>m; (m;I>>mG). 

From this more general point of view we would expect the ma33 of the 

vector resonance to be determined from the basic parameters m; and f, 

Cm* w and v=Higgs vacuum expectation value), and to be fairly insensitivi 

to m2 ~. Such argument3 suggest that in the one-doublet model, the new 

vector re3onance would be in the 2 TeV ma33 range, far too heavy to be 
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relevant to the CERN events. 

The same arguments which suggest that m ,,,. = 2 TeV in a one-doublet 

model also show that what is needed to produce a resonance of mass 

%- 
-170 GeV is a Higgs field which is strongly coupled but has a much 

smaller vacuum expectation value than the one-doublet value of v=Z50 

GeV. This is easily arranged by enlarging the Higgs sector to include 

more than one field which acquire vacuum expectation values. Since the 

observed Fermi constant only requires (ZV;)"~=Z~O GeV, the individual 

VEV's may be much smaller than in the one-doublet model. The easiest 

way to enlarge the Higgs sector without destroying the successful 

prediction of the p-parameter (i.e. r$/m~cos'B) from the minimal model 

is to introduce additional Higgs doublets. 12-14 It is easy to see that 

additional doublets do not alter the result p=l. Thus, we will consider 

a model with two Higgs doublets. Interpreting the CERN events as an 

I=J=l resonance, we are led to choose the two vacuum expectation values 

to be ~150 GeV and V-245 GeV. The current algebra-effective range 

analysis applied to this model yields a value for the 55 coupling 

+o constant (where 5-l are the charged and neutral physical Goldstone 

bosons of the two-doublet model). Using this result we can study W-y 

and Z-ymixing and estimate the production cross-section via this 

mechanism. This leads to a prediction of around 5vs produced for the 

integrated luminosity of the CERN collider experiments. Since this must 

be multiplied by the branching ratio into a particular exotic signature 

(e.g. a monojet), a total of 5’ys is not large enough to explain the 

CERN data. However, the production rate is only loosely constrained by 

our arguments and may in fact be larger. 
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In the investigation described here we were led by consideration of 

the CERN events to favor a model with two Higgs doublets with vacuum 

expectation values which differ by about a factor of 5. Shortly after 

the completion of this work, a remarkable new resonance with a mass of 

8.3 GeV was announced by the Crystal Ball collaboration.15 This 

resonance, called 5, was seen in the decay T+Y+<. It is tempting to 

interpret the 5 as some type of Higgs particle, but the observed 

branching ratio in T decay is about a factor of 100 too large to be the 

Higgs scalar of the minimal model. Several authors16 have pointed out 

that, in a two-doublet model, the 5 has a natural interpretation. In 

addition to the gauge bosons, this model contains three neutral and two 

charged particles which are physical. Two of the neutral scalars are 

radial Higgs modes analogous to the Higgs scalar of the minimal theory. 

I" our strongly interacting scenario, we would expect at least one of 

these scalars to be very broad and massive [See note below]. The third 

neutral particle is a Goldstone mode. It's mass results from a term in 

the Lagrangian of the form (A+(efo2)2 + C.c) which produces a mixing 

between the two Higgs doublets after spontaneous symmetry breakdown. If 

this term is small, then the physical neutral Goldstone particle can be 

quite light even in a theory with strong self interactions. It is this 

particle which will be identified with the ~(8.3). 

[In this paper we have adopted the pseudoscalar interpretation of 

the ~(8.3). Another possibility is that the observed resonance is the 

lighter of the two Higgs scalars (referred to as H, in the Appendix). 

Much of our analysis might still apply in this latter case. The 

smallness of the 8.3 GeV mass constrains A, to be small, but X3 may 

still be large. I" this case, the H,H, scattering amplitude satisfies a 
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low energy theorem of exactly the same form as Eq.cZ.9) for 55 

scattering. (The H1-particle here plays the role of an approximate 

Goldstone boson of the higher O(8) symmetry associated with the A3 term 

in (A.Zj.1 The effective range analysis of H,H, scattering leads to 

phenomenological results similar to the case discussed in the text.1 

In order to understand the observed branching ratio for T+~+r,(8.3), 

one again needs a ratio of VEV’s on the order of v/V-0.1-0.2. l6 The 

fermions are prevented from coupling to e2, the field with the larger 

VEV, by a discrete symmetry. The Yukawa coupling of the b quark to e, 

is thus increased by a factor of V/v over the minimal model, and the 

expected branching ratio is correspondingly increased.‘z-13 We find it 

intriguing that our consideration of the CERN events has led us to the 

same model which may also explain the properties of the r,(8.3). We look 

forward to more information from both the CERN collider and from e+e- 

storage rings to provide definitive tests of these ideas. 
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II. New Resonances in the Strongly Coupled Higgs Sector __-- 

In this section we will examine the implications of current algebra 

combined with analyticity, unitarity, and crossing symmetry for the 

scattering of Goldstone particles (either longitudinal gauge bosons or 

physical Goldstone bosons) in a strongly coupled Higgs theory. our 

procedure will be to construct unitary partial wave amplitudes by an 

effective range parametrization of the s- and p-wave phase shifts, using 

the low energy current algebra constraints to fix the scattering length 

parameter. The analogous treatment of ~1-71 scattering by Brown and 

Gobleg yields a reasonable description of the s- and p-wave phase shifts 

below 1 GeV. It may be worth remarking that the implications of 

crossing symmetry for these unitarized amplitudes may also be 

investigated. In particular, the s- and p-wave phase shifts must 

satisfy certain integral constraints derived by Roskies. 17 In the 71-11 

case, these constraints have been discussed by Basdevant and Lee.” From 

their results we see that the Brown-Gable effective range amplitudes 

violate the Roskies crossing relations by as much as 302, whereas the 

Pad& amplitudes of Basdevant and Lee satisfy them to within 58.” By 

this criterion, the Pad; amplitudes are somewhat more acceptable than 

the effective range amplitudes. [See, however, the second paper in Ref. 

9.1 On the other hand the general behavior of the phase shifts is quite 

similar in the two approaches, and the effective range calculation is 

considerably simpler. Based on the results of Basdevant and Lee, we 

believe that a full Pad; analysis of Higgs model perturbation theory 

would merely strengthen and not alter our main conclusions. 
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To begin, we will study longitudinal gauge boson scattering in the 

minimal one-doublet model. Ignoring fermions, the Lagrangian for the 

Higgs sector of the theory is 

LH= (D,$)t(D,$) + $$t$ - X($‘t$)* 

where .$ is a complex scalar doublet, 

(2.1) 

(2.2) 

and D li is the SU(2)~U(l) gauge covariant derivative. After symmetry 

breaking, (2.1) describes a theory with three Goldstone bosons w+, w-, 

and z (which represent longitudinal gauge bosons) and a neutral Higgs 

scalar h, which interact according to a tree-level effective potential 

of the form 

rH = hv2h* + hvh(2w+w-+z*+h’) + ;(2w+w-+z2+h2)2 (2.3) 

To this we add an explicit longitudinal gauge boson mass term generated 

by the gauge covariant derivatives of the scalar field. For simplicity, 

we will neglect the difference between mW and mZ and approximate the 

gauge boson mass term by the isospin symmetric form 

I-’ = ~m32w+w-+z~). (2.4) 

This makes it somewhat easier to derive the low energy theorem for gauge 
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boson scattering, which depends on the transformation properties of this 

term. 

The Higgs Lagrangian (2.11, without the gauge terms, is invariant 

under a global 0(4)=SU(2)xSU(Z) group consisting of orthogonal 

transformations among the four real components of $. This is 

spontaneously broken down to O(j)-SU(2)=“weak isospin” by the vacuum 

expectation value of the Higgs field. The w’ and z form an I=1 

multiplet and the h has I=O. The model is isomorphic to the meson 

sector of the chirally invariant SU(Z)xSU(Z) linear D model with w’,z 

corresponding to $,‘, and h corresponding to O. The current algebra 

arguments first discussed by Weinberg lead to a low energy theorem for 

the scattering of Goldstone bosons. Let Wi, i=l ,2,3, be the isospin 

components of w*,z, and let T iJ,kl(s,t) be the scattering amplitude for 

the process 

wi+wj + wic+wl (2.5) 

Then, the low energy behavior of this amplitude required by current 
^ 

algebra is T + T, where 

^ 
T iJ kl(s't) = ~{aij6kl(s-Ym;) + 6ik6jl(t-Ymi) + GilGjk(u-Ymi)} (2.6) 

where s, t, and u are the usual Mandelstam variables. In this formula Y 

is a constant which depends on the transformation properties of the term 

in the Lagrangian which explicitly violates chiral symmetry. The 

original Weinberg result for 71-71 scattering, Y=l , assumed that this 

symmetry breaking term transformed like the isoscalar component of the 
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[:*:I representation of SU(2)xSU(2). In the o-model this corresponds to 

a term proportional to the (I field, 

I-' = c0nst.x 0 (2.7) 

More generally, the theorem (2.6) can be derived for a symmetry breaking 

term which transforms like the isoscalar component of the representation 

[;,;I, which are the only irreducible representations containing the I=0 

representation of the isospin group. For this case, the constant Y in 

(2.6) is given by” 

8-N(N+Z) 
Y=T (2.8) 

For the case we are considering, it is easy to see that the isospin 

symmetric W mass term (2.4) belongs to the [l,ll representation, for 

which Y=O. Thus the low energy theorem (2.6) reads 

; = &{6ij6kls + 6ik6jlt + 6i16jk”] (2.9) 

which may be verified by an explicit tree-level Feynman graph 

calculation. It should be remarked that, even though (2.9) might also 

have been obtained if we had ignored m; from the start, we have here 

derived this result in the presence of a finite W mass. Aside from the 

approximation mW=mZ, it should be valid at low energies up to 

corrections of O(g2). 
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Now let us consider how large s, t, or u can be before the low 

energy theorem (2.9) will start to fail. For a weakly coupled theory, 

the scale at which (2.9) fails is set by the perturbative Higgs mass 

a5=2Av2, i.e. the corrections are of order s/m;. However, in a strongly 

coupled theory mh is very large OlTeV), and the range of validity of 

(2.9) is set instead by unitarity. In this case, corrections are of 

order s/v’, and we should be able to extend the range of validity of the 

current algebra result by unitarization. Experience with the 7-r system 

suggests that a unitarized version of the partial wave amplitudes which 

follow from (2.9) should provide a reasonable description of the s- and 

p-wave w-w phase shifts from threshold up to about 2 TeV. (Neglecting 

Goldstone boson masses, the scale conversion factor is v/f,+xIo3.) 

The scattering amplitude T.. 1J ,kl(s ,t) may be decomposed into 

s-channel partial wave amplitudes tlJ with definite isospin I and 

angular momentum J by writing 

T.. 1671 1 t (s) (ZJ+l) P (cos 0) P!I) iJ,kl(s’t) = I,J IJ J u,kl 
(2.10) 

where ~(1’ are isospin projection matrices. From the current algebra 

result (2.9) we obtain three nonvanishing partial wave amplitudes given 

by 

t o. = (4nv2)-‘CZqz+3m~] 

t 2. = -(4nv2)-1q2 

= (12nv2)-‘$ 

(Z.lla) 

(Z.llb) 

(2.11c) 

Following Brown and Gable, we can now use the effective range procedure 
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to construct unitary amplitudes with low energy behavior given by 

(2.11). Unitarity requires that, in the elastic region Jimz<s<l6m$ the 

partial wave amplitudes must satisfy 

Im tIJ = +.,I* (2.12) 

The phase shift 6IJ is defined by 

t IJ = (&/k)e 
isIJ 

=“‘I J , (2.13) 

and the unitarity condition (2.12) implies that the phase shifts are 

real in the elastic region. For our discussion, we will assume that 

these results are approximately valid well beyond the elastic region, an 

assumption which works quite well in the case of V-II scattering. The 

unitarity condition implies that the inverse amplitude has a 

discontinuity acr’oss the real axis for s>4mi give” by 

Im t;; = -k/h . (2.14) 

Assuming no other singularities, the function -1 tIJ is easily 

reconstructed from its discontinuity by evaluating the integral 

- :~m,s’(s’-i) J1-(4m:/sl) ds, 

w 

(2.15) 

This gives the result 
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[tIJ(s)l-' = h(s) + gIJ(s) (2.16) 

where 

h(s) = -i(k//‘?) + h,(s) (2.17a) 

and 

&+2k 
h,(s) = kl”[- 

n& &-2k1 . 
(2.1’7b) 

and, in our approximation of neglecting inelastic channels, gIJ(s) is a 

meromorphic function. The formula (2.16) is a generalized effective 

range expansion. We can now use the current algebra amplitudes (2.11) 

to constrain the form of gIJ(s). Consider first the s-wave isoscalar 

amplitude too(s). A standard effective range expansion would approximate 

g,,,,(s) by a finite order polynomial in k2. But it can easily be SC?C?” 

from (2.11a) that such a” expansion would have a small radius of 

convergence (k2<3mi/2) eve” if the amplitude were given exactly by 

current algebra. Brown and Gable construct a unitarized s-wave 

amplitude by Simply approximating gOO(s) by its current algebra value, 

and writing 

too(S) = 
too(S) 

l+h(s&,(s) 
(2.18) 

The phase shift corresponding to the amplitude (2.18) is positive and 

rises to around 30”~40’ in the 1-Z TeV region.’ As we mentioned in the 
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Introduction, a more elaborate Pad; analysis” gives a phase shift 

closer to 90°, but in either case, the Higgs scalar does not appear as a 

well-defined narrow resonance in the strongly coupled theory. 

The I=2 s-wave current algebra phase shift (2.llb) is negative, and 

we therefore do not expect 

turn to the most interesting 

correct threshold behavior 

range approximation consists 

q,(s) = 

any resonance in this channel. Finally, we 

channel, I=J=l. Taking into account the 

of the p-wave phase shift, the effective 

of writing 

71 1 
- 

k2 
+ $11 (2.19) 

where 
3 1 and rll are the scattering length and the effective range. 

From the current algebra result (2.llc), the scattering length is 

determined to be 

71 = 1znv2 

The amplitude is given by 

t,,(s) = 
k2 

12 
all+~k rll 

2 
+k h,(s)-i(k/&) 

(2.20) 

(2.21) 

For a sufficiently negative effective range parameter, this amplitude 

will have a resonance (i.e. the real part of its denominator will 

vanish) somewhere above threshold at s=” 2 
Y’ 

Although current algebra 

does not in itself determine r,,, as discussed in the Introduction we 
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will rely on the X-II analogy and on the Padk analysis of o-model 

perturbation theory to argue that the I=J=l amplitude does in fact 

exhibit a resonance. Neglecting the variation of h,(s) in the resonance 

region, the amplitude (2.21) may be written 

tll = 

"yf.V(k/ky)2(m.l,/kY) 

" y" -s-imy+ (k/kV)3(my/&) 
(2.22) 

where 

kg = (m.$4mE)/4 (2.23) 

The current algebra result for the scattering length (2.20) gives an 

expression for the resonance width in terms of its mass, 

r y = (3nv2";)-'k; 

Thepw coupling constant may be obtained from the standard formula 

(2.24) 

‘y= 6nm 2 
Y 

giving the result 

(2.25) 

f2’ww = fi(k,/) (2.26) 

Note that, for the 71-a system, this gives a coupling f prn=5.3 which is 

in reasonable agreement with the experimental value of about 6.0. (If 

the pion mass is neglected, the formula (2.26) is equivalent to the KSRF 
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relation.) In the case of a one-doublet weak interaction theory, we 

have v = 250 GeV. It seems quite unlikely that the vector resonance in 

this system could be in the 170 GeV region of the CERN events, since 

this is very close to the w-w threshold (k -0). Eq.(2.26) would give a 
v- 

very small coupling constant, in contradiction with our experience with 

the ‘1-71 system. If we instead assume that f y ww= f pml then (2.26) 

implies that 
mqr- 

2 TeV for the one-doublet model. 

It is clear from these arguments that what is needed to produce a” 

I=J=l resonance at 170 GeV is: (1) A Higgs doublet with a much smaller 

vacuum expectation value, and (2) A pair of Goldstone bosons whose mass 

is substantially less than mw so that the 170 GeV resonance is well 

above threshold. Both of these conditions can be satisfied by 

introducing a two-doublet model of weak interactions. This model has 

been studied by a number of people, 13-14 and has recently received 

considerable attention due to a possible interpretation ” of the ~(8.3) 

resonance discovered at Crystal Ba11.15 The details of this model which 

are relevant to the present discussion are presented in the Appendix. 

From Eq.cA.2) we see that, assuming the discrete symmetry (A.3), there 

are five independent coupling co”sta”ts, h,-h5, and two vacuum 

expectation values, v=<$,> and V=<$,>. Of the five coupling co”sta”ts, 

hl and A2 describe the self-coupling of each doublet, and A3-A5 describe 

the interaction between the two doublets. The vacuum expectation values 

are constrained by the observed Fermi decay constant to satisfy 

(v~+V~)“~=~~O GeV. In addition to the three longitudinal gauge bosons, 

the perturbative spectrum of the theory consists of five particles. In 

the case of weak interdoublet coupling, two of these, H, and H2' 

correspond to radial oscillations of the Higgs fields while the other 
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three (hereafter referred to as 5’ and 5’) are Coldstone modes. The 

masses of the 5’s arise from the cross COUplingS h4 and A5 which induce 

a mixing between the two doublets upon sp0*ta*e0us symmetry breaking. 

In fact if we accept the two-doublet pseudoscalar interpretation of the 

~(8.3)~ the coupling constant A5 is determined from the 5 mass (c.f. 

Eq.(A.l4)) to be quite small, 

h5 = 2.2x10-3 (2.27) 

We will assume that the charged Goldstone particles c’, like co, have a 

fairly small mass (say i30 GeV),, which implies, by (A.l2), that the 

coupling constant A4 is also very small. This leaves only h,, A2, and 

h3 which are potentially large. In Appendix A we have listed the 

Feynman vertices for the two-Higgs model, neglecting A4 and h5 terms. 

Before discussing the general case where A,, ~~~ and A3 are al1 

large, it is useful to consider the particularly simple case where A3 is 

also small. In this case the two doublets are strongly interacting with 

themselves but weakly interacting with each other. In this situation, 

our previous analysis of the one-doublet model can be applied to each 

doublet separately. In each of the two SeCtOrS, e, and ,$2, we would 

expect an I=J=l resonance with a mass reduced compared to the 

one-doublet model by approximately a factor V/(250 GeV)=l and v/(250 

CeV)-0.1-0.2 respectively. The latter resonance may have a mass small 

enough to be relevant to the CERN events. The important point here is 

that the scale factor set by the ratio of the CERN event energy (170 

GeV) to the natural weak scale of the Fermi constant (l-2 TeV) is 

roughly the same factor that is needed to explain the enhanced branching 

ratio for T+~+<(8.3). 
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The analysis is somewhat more complicated for the case when Al, ,j2, 

=*d A3 are all large. For general values of (v/V) one must consider the 

coupled channel unitarity equations connecting ww, WY, and 55 states. 

However, in the limit (v/V)<<l, the problem again simplifies and 

effectively reduces to a set of single-channel problems. To see this 

consider the three-point Feynman vertices (A.20) in the limit (v/V)<<l, 
l 

r(<+<-H,) = 2v[ 
'lA2+'l A3+"2A3j 

A 2+A3 

r(S+W-Hl) = -$~h1’2~;~;3+h2h3~ 

v 
A 

(2.28.~) 

r(w+w-H,) = 0("3/VZ) (2.28~) 

We will limit our discussion to the I=J=l channel and therefore do not 

need the four-point vertices, which only contribute to the J=O 

amplitudes in tree approximation. The low energy theorem for p-wave 

scattering is obtained from the t- and u-channel Higgs exchange graphs. 

To extract this low energy behavior the Higgs propagators are replaced 

‘a’ 

Cm:-t)-’ + s 

“H 
(2.29) 

(discarding a constant term which only contributes to the s-wave). From 

Eqs.CA.18) and (A.19) we see that mH is of order v, while mH is of 
1 2 

order V. Thus, for (v/V)<<1 we need only keep the H, exchange graphs. 

Moreover, it is seen from (2.28) that only the c<H, coup1 ing is 

non-vanishing to leading order in (v/V), and we only need to consider 
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the K,< channel by itself. The A-dependence of the factor (l/m4 ) in 
H1 

(2.29) is exactly canceled by the square of the vertex (2.28a), and the 

low energy theorem for r,< scattering reduces to the same result that was 

obtained for the decoupled case A3=0. The unitarity analysis again 

implies the existence of a vector resonance in the <r, channel with a 

mass in the 170 GeV range. Since the value of (v/V) is presumed to be 

about 0.2, the (v/V)<<1 approximation should be fairly reliable. Note, 

however that in this approximation, the 170 GeV vector resonance y 

decays exclusively into cc pairs. In the discussion of decay modes in 

Section IV, we will find it desirable to relax this restriction and 

consider the possible decay pr,+gauge boson, which may be necessary for 

interpreting some of the CERN events. Naively we would expect the rate 

for this process to be suppressed by a factor (v/Vj2 which would imply 

about a 4% branching ratio, but it is possible that the branching ratio 

for v W+s may be larger than the naive estimate. The decay y- WW 

is probably unimportant even if it is allowed by phase space, since it 

iS supressed by a factor (v/V)~ = 10-j. 
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III. Production and Decay of FResonances - 

In this section, we will discuss the production of I=J=l resonances 

and estimate the number of such events that would be expected in the 

CERN collider experiments. The most efficient mechanism for the 

production of ys is via their mixing with the gauge bosons. 

The quantum numbers of they” are the same as those of $‘O 

(where we use W” to represent the neutral SU(2) gauge boson which mixes 

with the U(l) boson to form 2’ and Y). This allows a mixing between the 

pf,-t.0 and the gauge bosons W”’ analogous to the p-Y mixing familiar 

from vector dominance arguments in hadron physics. I” fact the vector 

dominance argument can be carried directly over to the Y-W mixing 

problem. Since the sine of the relevant mixing angle, (g/2fy)=O. 1 is 

quite small, a lowest order Feynman diagram treatment is sufficient. In 

the pure Higgs theory without gauge interactions we define the global 

weak isospin current in terms of the Higgs fields. For the two-doublet 

model this is given by 

.a 
J,, = eabc$ 5’ ‘$T + (3.1) 

where $1 1 and $2, i=l to 3 are the isospin components of the two Higgs 

fields. Recall that, in the p-Y mixing problem, the p-Y coupling 

constant is related to the pnn coupling constant by assuming p-dominance 

of the isovector current form factor of the pion at q2=0. If the p-Y 

vertex is denoted by (em:/fp), the vector dominance assumption leads to 

the result f =f p pnn. This agrees well with the p-Y vertex measured in the 

decay p + e+e-. For the case of interest here, we apply a ydominance 
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assumption to the form factor 
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<Olj~lsbic> , (3.2) 

where jt is the weak isospin current of the Higgs sector, defined in 

(3.1). Denoting the y:W mixing vertex by 

0; 
yw-y= T * 

v 
(3.3) 

vector dominance gives 

(3.4) 

As we argued in the last section, to the extent that (v/V)<<l, we may 

unitarize the single channel 55 scattering amplitude by itself. The 

p5-r; coupling in terms of Y and mv is then given by (c.f.CZ.23)) 

(3.5) 

Here and in the following, we Will neglect mg compared to m . The W-y 

vertex is then 

yW-Y = gvmy/fi (3.6) 

The W-7 mixing problem and its effect on the W propagator may be 
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treated by methods which have previously been used to study Y-W' 

mixing.18 
. 

Applying this formalism to the FW mixing problem, the W 

propagator is found to be proportional to 

tq2 - [~,+~~~~2&ylr 

where 

mW' = mW/J1-(g/2%/)* - 

B = g/Jl-(g/2fy)' 

(3.7) 

(3.8) 

(3.9) 

From these formulae, it is easily seen that the behavior of the W 

propagator in the low energy region O<q2<m2 
W is only very slightly 

affected by $$%J mixing. For example, if the position of the W pole is 

taken to be 84 GeV, the effective mass measured at q2=0 is 84.2 CeV. 

The production cross-section for ys via FW mixing can now be 

estimated from the measured cross-section for W production. This gives 

2 
yw-Y o(pjJ+Fx) = RL- 

Cm'-m2)* 
xo(pP+w+x) 

Y w 
(3.10) 

Here RL is the ratio of the Drell-Yan q< luminosity factor at 

-r=m~/s-0.1 to that at T=mG/s=0.025, 
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(& T’m$,S 
RL = (‘glr=m;,s 

(3.11) 

A rough estimate gives about RL-0.1. The second factor in (3.7) may be 

evaluated from (3.6) and gives 

'WS = 0.03 
(m 2-m2) Y w 

(3.12) 

If we assume that the UAl and UA2 experiments each produced a total of 

about 650 W’s in their last run (assuming an 8% branching ratio for 

W+ev) then the total number of charged vs produced in the combined 

experiments is predicted from (3.10) to be about 4 (2 for each 

experiment). A similar estimate, using the observed Z” production 

cross-section and a 3% branching ratio for Z” + e+e-, predicts about 1 

neutraly/“ produced. 

Since the cross sections for events with particular anomalous 

signatures will be reduced by branching ratio factors, this is certainly 

a smaller number ofy”?s than one would need for a unified explanation 

of all the anomalous CERN events. Nevertheless, the predicted number of 

y”;s is not insignificant, and we are encouraged enough to go on and 

consider some of the individual event configurations and see how well 

they conform to our expectations for the decay of $?-resonances. 
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There appear to be at least three types of anomalous collider 

events: (1) The “monojet” events (A through F) of UAl, consisting of a 

single hard jet and large missing transverse momentum; (2) The 

electromagnetic shower events (C and H) of UAl consisting of a hard 

“photon” (an isolated electromagnetic shower with no tracks in the 

central detector) and large missing transverse momentum; and (3) The UA2 

events consisting of a hard electron, one or more jets, and missing 

transverse momentum. (We will not discuss the Z” + e+e-Y and p+u-Y 

events.) 

Of course, some of these events may be due to conventional 

background sources, e.g. the production of a gauge boson with a hard 

gluon bremsstrahlung. But events of the latter conventional type have 

bee” observed and appear to be in good agreement with QCD predictions. 

The jet energies in at least some of the anomalous events are beyond the 

range where a significant QCD background is expected. 

As we discussed in the last Section, the dominant decay modes of 

the z;T’>’ are expected to be into 55 and 5 + gauge boson. For the 

present discussion we will make no assumption about the relative 

importance of these two modes, although, in the two-doublet model we 

have considered, the r, + gauge boson mode is expected to be supressed by 

a factor of (v/Vj2. In fact this decay mode appears to provide a more 

acceptable interpretation of several of the most interesting events than 

does the theoretically favored 55 decay mode. 

The easiest way that a ydecay can produce a monojet event is via 

the decay FgZ” followed by Z’+V~. The latter decay is expected to have 

a large (-18%) branching ratio. The single jet in event B of UAl has a 

total ET of 48 CeV with only three charged tracks and a low invariant , 
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mass of 0.79*0.12 CeV/c*. We interpret this event as ay+ -t c+Z” decay 

followed by Z” + VT and <+ + T+v ~ and finally T+ + A,;,. (Here we use A, 

to denote the fact that the 3~ decay mode of the 7 has a broad peak in 

the 1 GeV region.) Event A of UAl also admits a natural interpretation 

in our scheme. The monojet in this event has a striking character, 

consisting of a very hard prompt muon and a hadronic and electromagnetic 

shower at a finite angle (-0.1 radian) with respect to the muon 

direction. The total ET is 71 GeV and the invariant mass of the muon + 

shower system is around 5 GeV. We interpret this jet as arising from 

the decay c”+r; followed by ‘+uTuvr and ; + hadrons + Tt. The observed 

transverse momentum of the muon is surprisingly large in this 

interpretation, but is not impossible for sufficiently asymmetric 

decays. In this event, there is some jet-like activity opposite the 

monojet, and the recoiling object may be a r,’ + TV~ with the T decaying 

into hadrons which are soft enough to not be counted as a jet. Thus, 

event A would be interpreted as av + co<* decay. The “monoshower” 

event H of UAl consists of a single isolated electromagnetic shower of 

54 GeV opposite a large missing pT of about 40 GeV. We note that, in 

the decay p 5 + neutral gauge boson, the neutral gauge boson is the 

linear combination of z 0 and Y that forms the weak isovector W”. Thus, 

we would expect the decay p 5 + Y to occur at a rate supressed by a 

factor tan2eW compared to the Z” mode. Noting also that the lego plot 

for event H does show some jet-like structure opposite the shower, we 

suggest the following interpretation:y’ + gf; + Y followed by c* + ~v T 

with the 5 decaying into soft enough hadrons to not qualify as a jet. 

Finally, the UA2 events consist of a hard electron, missing pT, and one 

or more jets. One of these (event D) appears likely to be a heavy quark 
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decay, while the other three (A-C) are consistent with being W + jet(s). 

The invariant mass of the W + jet(s) system in all three events is in 

the 170 GeV range (though it must be cautioned that this region is 

kinematically favored by the event selection criteria). Events of this 

general type could arise from the decay p<+W with the K, decaying 

nonleptonically. However, event C does not fit this interpretation, 

because the invariant mass of the two jets in this event (which should 

equal the mass of the charged or neutral 5) is 63 GeV. Event A is 

likely to be QCD background. Event B may be consistent with a p<+W 

interpretation if the invariant mass of the single jet is large enough. 

Needless to say, all of the interpretations we have discussed here are 

quite tentative, even if the basic ideas are correct. Although the 

general argument that a strongly coupled Higgs sector will give rise to 

dynamical vector resonances seems fairly compelling, the quantitative 

details of the production and decay of these resonances, as well as the 

relation between the resonance mass and the VEV of the Higgs field, are 

not very tightly constrained by our arguments. A larger sample of 

anomalous collider events together with a study of the decay modes of 

the ~(8.3) should provide a more detailed confrontation with the ideas 

we are proposing. 
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IV Conclusions 

In this paper we have studied properties of weak interaction models 

with strongly coupled Higgs sectors. By imposing unitarity constraints 

on the low energy current algebra amplitudes for Goldstone and 

longitudinal gauge boson scattering, it was concluded that, in addition 

to the spinless bosons associated with the Higgs field degrees of 

freedom, there should be dynamical resonances. Our main focus was on 

the I=J=l resonance, referred to as r which is analogous to the p 

resonance in ~l~l scattering. Although in the minimal one-doublet model 

this resonance should have a mass in the 2 TeV range, the mass of the 

lightest I=J=l resonance in a two doublet model can be much lower. If 

one takes the ratio of VEV’s in this model to be that required for the 

interpretation of the ~(8.3) as a Higgs particle, the mass of they 

should be roughly in the 170 GeV range, and it is thus a possible 

candidate for the anomalous CERN collider events. There are some 

apparent problems with this scheme, particularly in the rather small 

number (-5) of yls predicted for the last CERN collider run. This 

would have to be enhanced by as much as an order of magnitude or more to 

agree with the observed rate of anomalous events. There is also a 

problem with the decay branching ratios in that the decay $&<+gauge 
/ 

boson seems to be less suppressed relative to p<< than naive 

unitarized tree-level calculations would suggest. On the other hand, we 

find the idea that the anomalous CERN events are the manifestation of a 

dynamical resonance in the Higgs sector to be quite appealing. The 

results we have discussed in this paper encourage us to take this 

possibility seriously as further data become available. It would be a 
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very interesting development indeed if both the collider events and the 

~(8.3) turned out to be evidence of an emerging Higgs sector. 
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Appendix A 

In this Appendix we discuss some of the properties of the 

two-doublet Higgs sector which are used in our analysis of Goldstone 

boson scattering amplitudes. With some changes of notation, we will 

follow the general conventions of Ref. 13. The model consists of two 

complex scalar doublet fields, 

(A.1) 

which interact according to an effective potential 

(A.21 

In choosing this form for the potential we have imposed a discrete 

symmetry on r under the transformation 

$1 + $1 

$2 + -02 
(A.3) 

The vacuum expectation values of the fields are given by 
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0 

<@,> = 0 Y 

0 
q2> = (i v 
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(A.4) 

There are eight scalar degrees of freedom in the two-doublet system, and 

the mass matrix is easily obtained by shifting the field origin, 

0 0 
+, = " + $, 

0 0 
+2 = v + $2 

(A.51 

and calculating all quadratic terms in (A.2). This matrix is 2x2 block 

diagonal with the charged and neutral Goldstone modes and the Higgs mode 

of each doublet mixing separately. Let us denote the real and imaginary 

components of $y and $: by 

$y = (h+v) + i$ : (n.6) 

where h and $: (H and $:) are the Higgs and neutral Goldstone modes of 

4, ($,) respectively. The 2x2 mass matrix for each of the three 

Goldstone modes is proportional to the same matrix, 

“2 -vV 

i i 
-?Jv V2 

(n.8) 

and thus the mixing angle for the Goldstone sector is given by 
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tan 6 = G 

The mass eigenstates are then 

W+ = cos6 ai: + sin6 $' 

<+ = -sing a' + c0sB 0' 

and 

(A.9) 

(A.lOa) 

(A.lOb) 

2.0 = COSf? a3 + sinB +3 (A.llb) 

p = -sin6 a3 + ~0.36 e3 (A.llb) 

The w+ and z" are the massless modes which are eaten by the gauge 

fields, while the masses of the physical Goldstone bosons are 

2 
mc+ = A~(Y 2+v21/2 (A.121 

,g = +2+v2v2 (A.13) 

The mass matrix for the neutral Higgs modes h and H is 

(A.14) 

The masses and mixing angle a in this sector may be easily worked out. 

Define the eigenmodes H, and H2 by 
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HI = coscl h + sina H 

H2 = -sina h + co% H 

(A.15) 

(n.16) 

The mixing angle is given by a fairly complicated expression, but for 

(v/V)<<1 it reduces to 

.A-li 
A2+A3 v 

In this same approximation, the masses are 

2 

mH1 
= 2v2(i,A2+A,A3+A2A3)~(A2+A3) 

2 

mH2 
z 2”2(A2+A3)(1+a2) 

(A.17) 

(n.18) 

(A.19) 

Next let us consider the three-point Feynman vertices corresponding 

to the potential (A.2). As pointed out in Section II, we do not need 

the four-point vertices for consideration of p-wave scattering at tree 

level. In view of the discussion in Section I, we will assume that A4 

and A 5 are both <<l and only include those pieces of the interaction 

which are proportional to A,, A2, or A 3. With these restrictions, we 

obtain the following vertices: 
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r(c+r,-H,) = 2A,v cos28 cosa + 2X2V sin28 sina + 2A3cos26(v coscl - V sina) 

(A.ZOa) 

r(c+w-H,) = -2A,v sin6 cos6 coscl - 2A2V sing COSB sincr (A.ZOb) 

r(w+w-H,) = 2A,v sin 6 cos CI + 2A2V cos B sin u + 2A3cos28(V sina - Y cosa) 

(A.20~) 

In the limit (v/V)<<l, these vertices reduce to the expressions given in 

Eq. (2.28). 
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